Line bundles and divisors

For a divisor DDiv(X)D\in\mathrm{Div}(X), define a sheaf OD\mathcal{O}_D on XX

OD(U):={fMX(U):(f)D}.\mathcal{O}_D(U):=\{f\in\mathcal{M}_X(U):(f)\geq -D\}.

Prop. OD\mathcal{O}_D is a locally free sheaf of OX\mathcal{O}_X-module of rank 11.

Recall the exponential sequence

0ZOXOX0.0\rightarrow\mathbb{Z}\rightarrow\mathcal{O}_X\rightarrow\mathcal{O}_X^*\rightarrow 0.

Given an open cover U={Ui}iI\mathcal{U}=\{U_i\}_{i\in I}, such that Ui,UijU_i, U_{ij} are simply connected. There is a long exact sequence of groups induced by the short exact sequence:

Here we shall define the Chern class (named after 陈省身)

c1:H1(U,OX)H2(U,Z)c_1:H^1(\mathcal{U},\mathcal{O}_X^*)\rightarrow H^2(\mathcal{U},\mathbb{Z})

and prove that c1c_1 fits into the long exact sequence.


Definition of Chern class

Given gZ1(U,OX)g\in Z^1(\mathcal{U},\mathcal{O}_X^*). Since UijU_{ij} is simply connected, then hijOX(Uij)\exists h_{ij}\in\mathcal{O}_X(U_{ij}), s.t.

gij=exp(2πihij).g_{ij}=\exp(2\pi ih_{ij}).

Hence (hij)(h_{ij}) defines an element in C1(U,OX)C^1(\mathcal{U},\mathcal{O}_X). Notice that gg satisfies cocycle condition. Then

gijgjkgik1=exp(2πi(hij+hjkhik))=1g_{ij}g_{jk}g_{ik}^{-1}=\exp(2\pi i(h_{ij}+h_{jk}-h_{ik}))=1

Namely hij+hjihikZh_{ij}+h_{ji}-h_{ik}\in\mathbb{Z}, which implies that(δh)ijk=hij+hjihik(\delta h)_{ijk}=h_{ij}+h_{ji}-h_{ik}, and δhZ1(U,Z)\delta h\in Z^1(\mathcal{U},\mathbb{Z}). Therefore, we can define

c1([g]):=[δh]H2(U,Z).c_1([g]):=[\delta h]\in H^2(\mathcal{U},\mathbb{Z}).

In this process, the definition relies on the choice of hh. If another hh' is given, then

hh=(2πiaij)C1(U,Z).h'-h=(2\pi ia_{ij})\in C^1(\mathcal{U},\mathbb{Z}).

Hence [δhδh]=[δa]B1(U,Z)[\delta h-\delta h']=[\delta a]\in B^1(\mathcal{U},\mathbb{Z})​.


Exactness at H1(U,OX)H^1(\mathcal{U},\mathcal{O}_X^*)

Case I: Let [g]=e([f])im(e)[g]=e([f])\in\mathrm{im}(e), where f=(fij)Z1(U,OX)f=(f_{ij})\in Z^1(\mathcal{U},\mathcal{O}_X). Then by cocycle condition, hC0(U,OX)\exists h\in C^0(\mathcal{U},\mathcal{O}_X^*), s.t.

gik=hiexp(2πifik)hk1.g_{ik}=h_i\exp(2\pi if_{ik})h_k^{-1}.

Since UiU_i is simply-connected, then kC0(U,OX)\exists k\in C^0(\mathcal{U},\mathcal{O}_X), s.t.

exp(2πiki)=hi,iI\exp(2\pi ik_i)=h_i, \quad\forall i\in I

gjl=exp(2πi(kj+fjlkl)),j,kI\Rightarrow g_{jl}=\exp\left(2\pi i(k_j+f_{jl}-k_l)\right), \quad\forall j,k\in I

By definition of Chern class above, c1([g])=[δ(kj+fjlkl)]=[δf]c_1([g])=[\delta (k_j+f_{jl}-k_l)]=[\delta f], and e([f])=[g]e([f])=[g]. Therefore,

c1e(f)=δf=:bB2(U,Z).c_1\circ e(f)=\delta f=:b\in B^2(\mathcal{U},\mathbb{Z}).

This implies that c1([g])=0H2(U,Z)c_1([g])=0\in H^2(\mathcal{U},\mathbb{Z})​.

Case II: Let [g]ker(c1)[g]\in\ker(c_1), namely c1([g])=[b]=0H2(U,Z)c_1([g])=[b]=0\in H^2(\mathcal{U},\mathbb{Z}). By the construction of Chern class, there exists hC1(U,OX)h\in C^1(\mathcal{U},\mathcal{O}_X), s.t.

gij=exp(2πihij),b=δhg_{ij}=\exp(2\pi ih_{ij}),\quad b=\delta h

The condition [b]=0[b]=0 means that [b]=[δh]H2(U,Z)[b]=[\delta h]\in H^2(\mathcal{U},\mathbb{Z}) is a coboundary. Namely, aC1(U,Z)C1(U,OX)\exists a\in C^1(\mathcal{U},\mathbb{Z})\subset C^1(\mathcal{U},\mathcal{O}_X), s.t.

δg=δa=b.\delta g=\delta a =b.

Set fij=hijaijC1(U,OX)f_{ij}=h_{ij}-a_{ij}\in C^1(\mathcal{U},\mathcal{O}_X). Then

δf=δhδa=bb=0,\delta f=\delta h-\delta a=b-b=0,

which implies that fZ1(U,OX)f\in Z^1(\mathcal{U},\mathcal{O}_X). In addition, since aikZa_{ik}\in\mathbb{Z}, then

exp(2πifik)=exp(2πihik)=gikOX(Uik).\exp(2\pi if_{ik})=\exp(2\pi ih_{ik})=g_{ik}\in\mathcal{O}_X(U_{ik}).

Therefore, [g]=e[f][g]=e[f]. This completes the proof of exactness at H1(U,OX)H^1(\mathcal{U},\mathcal{O}_X^*).


Exactness at H2(U,Z)H^2(\mathcal{U},\mathbb{Z})

Assume that we do not know H2(U,OX)=0H^2(\mathcal{U},\mathcal{O}_X)=0.

(1) imc1keri\mathrm{im} c_1\subset \ker i: suppose that [g]H1(X,OX)[g]\in H^1(X,\mathcal{O}_X^*). bZ2(U,Z)\exists b\in Z^2(\mathcal{U},\mathbb{Z}), s.t.

b=c1(g)=δhb=c_1(g)=\delta h

for some hC1(U,OX)h\in C^1(\mathcal{U},\mathcal{O}_X). Hence bB2(U,OX)b\in B^2(\mathcal{U},\mathcal{O}_X). In other words,

i(c1([g]))=[δh]=0H2(U,OX).i(c_1([g]))=[\delta h]=0\in H^2(\mathcal{U},\mathcal{O}_X).

(2) keriimc1\ker i\subset\mathrm{im}c_1: let [b]H2(U,Z)[b]\in H^2(\mathcal{U},\mathbb{Z}) such that i[b]=0H2(U,OX)i[b]=0\in H^2(\mathcal{U},\mathcal{O}_X). Then bB2(U,OX)b\in B^2(\mathcal{U},\mathcal{O}_X), which means that hC1(U,OX)\exists h\in C^1(\mathcal{U},\mathcal{O}_X), such that

b=δh.b=\delta h.

Define gij=exp(2πihij)g'_{ij}=\exp(2\pi i h_{ij}). Then gC1(U,OX)g'\in C^1(\mathcal{U},\mathcal{O}_X^*), and

(δg)ijk=exp(2πi(hij+hjkhik))=exp(2πiaijk)=1.(\delta g')_{ijk}=\exp(2\pi i(h_{ij}+h_{jk}-h_{ik}))=\exp(2\pi ia_{ijk})=1.

Thus δg=0C2(U,OX)\delta g'=0\in C^2(\mathcal{U},\mathcal{O}_X^*), and gZ1(U,OX)g'\in Z^1(\mathcal{U},\mathcal{O}_X^*). In this case, by definition of Chern class, c1(g)=[δh]=[b]c_1(g')=[\delta h]=[b], which means that bb has a preimage under c1c_1.


Divisors corresponds to line bundles

Cor. Let XX be a Riemann surface. Then there is a natural isomorphism of groups

Pic(X)H1(X,OX).\mathrm{Pic}(X)\cong H^1(X,\mathcal{O}_X^*).

Prop. Let XX be a Riemann surface, DDiv(X)D\in\mathrm{Div}(X) be a divisor on XX. Then there exists a holomorphic line bundle LL with a meromorphic section s:XLs:X\rightarrow L, s.t.

(s)=D.(s)=D.

Denote the line bundle and meromorphic section of DD by LDL_D and sDs_D.