Stiefel-Whitney Classes

In this chapter, we are going to study the Stiefel-Whitney classes on vector bundle. Somehow, we will postpone the concrete construction of the characteristic classes. The whole process would be

  1. Axioms of Stiefel-Whitney classes;
  2. Some examples and simple calculation of Stiefel-Whitney classes;
  3. Construction of Stiefel-Whitney classes.

The whole process is a lot more similar to the universal property in category theory. The construction can be (perhaps/maybe) forgotten. What we are going to keep in mind is the basic property of Stiefel-Whitney classes.


Axioms of Stiefel-Whitney Classes

Given a vector bundle π:EX\pi:E\rightarrow X of rank kk.

[Axiom 1] The ii-th Stiefel-Whitney class of EE, denoted wi(E)w_i(E), is

wi(E)Hi(X,Z/2)w0(E)=1,wi(E)=0 if i>k\begin{gathered} w_i(E)\in H^{i}(X,\mathbb{Z}/2)\\ w_0(E)=1,\quad w_i(E)=0~\text{if~}i>k \end{gathered}

Followed by Stiefel-Whitney classes, Stiefel-Whitney number arises, as a element in cohomology ring.

[Def] (Stiefel-Whitney number)

w(E):=w0(E)+w1(E)+w(E):=w_0(E)+w_1(E)+\cdots

[Axiom 2] If there is a pullback diagram of vector bundle

then

wi(fE)=fwi(E).w_i(f^*E)=f^*w_i(E).

Here the pullback on the right-hand side is the pullback on cohomology.

[Axiom 3] (Whitney product formula) Suppose that E,FXE,F\rightarrow X. Then

w(EF)=w(E)w(F)w(E\oplus F)=w(E)w(F)

[Axiom 4] (Nontriviality) Let η1\eta_1 be the tautological bundle over RP1\mathbb{R}P^1, then

w1(η1)0H1(RP1,Z/2)w_1(\eta_1)\neq 0\in H^1(\mathbb{R}P^1,\mathbb{Z}/2)


Property and First Examples

[Prop] Let EXE\rightarrow X be a vector bundle of rank kk.

  1. wi(Rk)=0w_i(\underline{\mathbb{R}^k})=0, i>0\forall i>0;
  2. w(ERk)=w(E)w(Rk)=w(E)w(E\oplus\mathbb{R}^k)=w(E)w(\underline{\mathbb{R}}^k)=w(E);
  3. If E=FRlE=F\oplus\underline{\mathbb{R}^l}, rank(F)=l\mathrm{rank}(F)=l, then

wi(E)=wi(F)=0,i>nl.w_i(E)=w_i(F)=0, \quad \forall i>n-l.

  1. w:(KO~(X),)(H(X;Z/2,))w:(\widetilde{KO}(X),\oplus)\rightarrow (H^*(X;\mathbb{Z}/2,\cup)) preserves operation.

[e.g.]

  1. w(TSn)=1w(TS^n)=1;

  2. Consider the inclusion map RPkRPn\mathbb{R}P^k\hookrightarrow\mathbb{R}P^n​.

    Since H(RPn);Z/2=(Z/2)[a]/an+1\boxed{H^*(\mathbb{R}P^n);\mathbb{Z}/2=(\mathbb{Z}/2)[a]/a^{n+1}} where aH1(RPn;Z/2)a\in H^1(\mathbb{R}P^n;\mathbb{Z}/2), then

    w(ηn)=a+1.w(\eta_n)=a+1.

  3. Notice that ηnRPn×Rn+1=Rn+1=ηnηn\eta_n\subset\mathbb{R}P^n\times\mathbb{R}^{n+1}=\underline{\mathbb{R}^{n+1}}=\eta_n\oplus\eta_n^\perp. Thus

w(ηn)w(ηn)=1,w(ηn)=(1+a)1=1+a+\begin{gathered} w(\eta_n)w(\eta_n^\perp)=1, \\ w(\eta_n^\perp)=(1+a)^{-1}=1+a+\cdots \end{gathered}

  1. (Tangent bundle of RPn\mathbb{R}P^n)

    π:Sn2:1RPnπ:T(RPn)TSn\begin{gathered} \pi:S^n\overset{2:1}{\rightarrow}\mathbb{R}P^n\\ \pi^*:T(\mathbb{R}P^n)\overset{\cong}{\rightarrow} TS^n \end{gathered}

    We can think of

    TxSn={vRn+1:vx=0}TxSn={vRn+1:v(x)=0}\begin{gathered} T_xS^n=\{v\in\mathbb{R}^{n+1}:v\cdot x=0\}\\ T_{-x}S^n=\{v\in\mathbb{R}^{n+1}:v\cdot (-x)=0\}\\ \end{gathered}

    and

    TαSn={{(x,v),(x,v)}:xα,vx=0}.T_\alpha S^n=\{\{(x,v),(-x,-v)\}:x\in\alpha, v\cdot x=0\}.

    Therefore, for α={x,x}RPn\alpha=\{-x,x\}\in\mathbb{R}P^n, there is an isomorphism

    TαRPnHom(ηnα,ηnα){(x,v),(x,v)}(xv)\begin{aligned} T_\alpha\mathbb{R}P^n&\rightarrow\mathrm{Hom}(\eta_n|_\alpha,\eta_n^\perp|_\alpha)\\ \{(x,v),(-x,-v)\}&\mapsto (x\mapsto v) \end{aligned}

    With such correspondence, we are now in a position to calculate the Stiefel-Whitney class of T(RPn)T(\mathbb{R}P^n).

    TRPnRHom(ηn,ηn)Hom(ηn,ηn)Hom(ηn,ηnηn)Hom(ηn,Rn+1)(ηn)(n+1)(ηn)(n+1)\begin{aligned} &\quad T\mathbb{R}P^n\oplus\underline{\mathbb{R}}\\ &\cong\mathrm{Hom}(\eta_n,\eta_n^\perp)\oplus\mathrm{Hom}(\eta_n,\eta_n)\\ &\cong\mathrm{Hom}(\eta_n,\eta_n\oplus\eta_n^\perp)\\ &\cong\mathrm{Hom}(\eta_n,\underline{\mathbb{R}^{n+1}})\\ &\cong(\eta_n^*)^{\oplus(n+1)}\\ &\cong(\eta_n)^{\oplus(n+1)}\\ \end{aligned}

    Thus,

    w(TRPn)=w(ηn)n+1=(1+a)n+1=1+(n+11)a++(n+1n)an.\begin{aligned} &w(T\mathbb{R}P^n)\\ =&w(\eta_n)^{n+1}\\ =&(1+a)^{n+1}\\ =&1+\binom{n+1}{1}a+\cdots+\binom{n+1}{n}a^n. \end{aligned}

    Notice here the coefficients are in Z/2\mathbb{Z}/2.

Application

[e.g.] (Immersion Problem)

[e.g] (Obstruction of cobordism)

Let MnM^n be a closed CC^\infty-manifold. We might ask “does there exist Wn+1W^{n+1}, such that W=M\partial W=M?” . Recall that

w(TRPn)=(1+a)nw(T\mathbb{R}P^n)=(1+a)^n

In particular, set n=2n=2, we have w(TRP2)=1+a2w(T\mathbb{R}P^2)=1+a^2. Consider the long exact sequence of (W,M)(W,M), using Poincare-Lefschetz duality,

Notice that we have smooth structure: denote i:MNi:M\hookrightarrow N.

TWM=TMν(M)=TMR\begin{aligned} TW|_M &=TM\oplus \nu(M)\\ &=TM\oplus\underline{\mathbb{R}} \end{aligned}

Let [M]Hn(M)[M]\in H_n(M) be the fundamental class of MM. Then

wα1(TM)wαk(TM),[M]=iwα1(TW)iwαk(TW),[M]=wα1(TW)wαk(TW),i[M]=0.\begin{aligned} &\langle w_{\alpha_1}(TM)\cdots w_{\alpha_k}(TM),[M]\rangle\\ =&\langle i^*w_{\alpha_{1}}(TW)\cdots i^*w_{\alpha_{k}}(TW),[M]\rangle\\ =&\langle w_{\alpha_{1}}(TW)\cdots w_{\alpha_k}(TW),i^*[M]\rangle\\ =&0. \end{aligned}

Therefore, RP2\mathbb{R}P^2 cannot be the boundary of a three-manifold. Otherwise, w2(TRP2)=0w_2(T\mathbb{R}P^2)=0 and w1(TRP2)w1(TRP2)=0w_1(T\mathbb{R}P^2)w_1(T\mathbb{R}P^2)=0, contradicting to w2(TRP2)=a20w_2(T\mathbb{R}P^2)=a^2\neq 0.