Orientation of Vector Bundles
First we shall understand the geometric meaning of Stiefel-Whitney classes on line bundles.
[Def] (Orientable) Let E → X E\rightarrow X E → X be a real vector bundle, with structural group O ( k ) O(k) O ( k ) . Say E E E is orientable if there exists a reduction of structural group to S O ( k ) SO(k) S O ( k ) .
For linear space V V V , define the set of orientation on V V V to be
o ( V ) : = { ( v 1 , ⋯ , v k ) is a basis for V } / G L k + ( R ) o(V):=\{(v_1,\cdots,v_k)\text{~is a basis for }V\}/GL_k^+(\mathbb{R})
o ( V ) : = { ( v 1 , ⋯ , v k ) is a basis for V } / G L k + ( R )
[Def] (Orientation) An orientation of E E E consists of the following material:
∀ x ∈ X \forall x\in X ∀ x ∈ X , an orientation α x ∈ o ( E x ) \alpha_x\in o(E_x) α x ∈ o ( E x ) ;
α \alpha α is locally constant, namely if local trivialization E U ≅ U × R k E_U\cong U\times\mathbb{R}^k E U ≅ U × R k , then α \alpha α gives
α ′ : U → o ( R k ) . \alpha':U\rightarrow o(\mathbb{R}^k).
α ′ : U → o ( R k ) .
[Remark] A manifold is orientable if T M TM T M admits an orientation. The k k k -th exterior Λ k E \Lambda^k E Λ k E of E E E , is also a line bundle over X X X .
[Prop] E E E is orientable ⇔ \Leftrightarrow ⇔ Λ k E \Lambda^k E Λ k E is trivial.
Proof. Global section s : X → E s:X\rightarrow E s : X → E endows E x E_x E x with an orientation. The inverse also holds. □ \square □
Construction via Orientation
To establish the construction of Stiefel-Whitney class, it requires two important theorem on vector bundles.
[Theorem] (Leray-Hirsch) Let F → P → X F\rightarrow P\rightarrow X F → P → X be a fiber bundle, R R R is a ring. If there exists u 1 , ⋯ , u k ∈ H ∗ ( P ; R ) u_1,\cdots,u_k\in H^*(P;R) u 1 , ⋯ , u k ∈ H ∗ ( P ; R ) , such that
u 1 ∣ F , ⋯ , u k ∣ F u_1|_F,\cdots,u_k|_F
u 1 ∣ F , ⋯ , u k ∣ F
is a basis for H ∗ ( F ; R ) H^*(F;R) H ∗ ( F ; R ) , then
H ∗ ( P ; R ) ≅ H ∗ ( X ; R ) ⊗ R [ u 1 , ⋯ , u k ] π ∗ α ∪ u i ↔ α ⊗ u i \begin{aligned}
H^*(P;R)&\cong H^*(X;R)\otimes R[u_1,\cdots,u_k]\\
\pi^*\alpha\cup u_i&\leftrightarrow \alpha\otimes u_i
\end{aligned}
H ∗ ( P ; R ) π ∗ α ∪ u i ≅ H ∗ ( X ; R ) ⊗ R [ u 1 , ⋯ , u k ] ↔ α ⊗ u i
Proof. (MV-induction)
If P = X × F P=X\times F P = X × F , then by Kunneth formula, the theorem establishes.
Let X 1 , X 2 ⊂ X X_1,X_2\subset X X 1 , X 2 ⊂ X be subspaces.
Since M M M is free, then the sequence is exact. □ \square □
[Theorem] (Splitting principle) Let E → X E\rightarrow X E → X be a vector bundle of rank k k k and f : Y → X f:Y\rightarrow X f : Y → X .
f ∗ : H ∗ ( X , Z / 2 ) → H ∗ ( Y , Z / 2 ) f^*:H^*(X,\mathbb{Z}/2)\rightarrow H^*(Y,\mathbb{Z}/2) f ∗ : H ∗ ( X , Z / 2 ) → H ∗ ( Y , Z / 2 ) is injective;
∃ L 1 , … , L k → Y \exists L_1,\ldots,L_k\rightarrow Y ∃ L 1 , … , L k → Y are line bundles, s.t.
f ∗ E = L 1 ⊕ ⋯ ⊕ L k . f^*E=L_1\oplus\cdots\oplus L_k.
f ∗ E = L 1 ⊕ ⋯ ⊕ L k .
Notice that
w 1 ( E ) ∈ H 1 ( X , Z / 2 ) ≅ H o m ( H 1 ( X , Z ) , Z / 2 ) = H o m ( π 1 ( X ) a b , Z / 2 ) ≅ H o m ( π 1 ( X ) , Z / 2 ) ≅ { 2 -cover of X } \begin{aligned}
w_1(E)&\in H^1(X,\mathbb{Z}/2)\\
&\cong \mathrm{Hom}(H_1(X,\mathbb{Z}),\mathbb{Z}/2)\\
&=\mathrm{Hom}(\pi_1(X)^{ab},\mathbb{Z}/2)\\
&\cong\mathrm{Hom}(\pi_1(X),\mathbb{Z}/2)\\
&\cong\{2\text{-cover~of~}X\}
\end{aligned}
w 1 ( E ) ∈ H 1 ( X , Z / 2 ) ≅ H o m ( H 1 ( X , Z ) , Z / 2 ) = H o m ( π 1 ( X ) a b , Z / 2 ) ≅ H o m ( π 1 ( X ) , Z / 2 ) ≅ { 2 -cover of X }
Define X E ~ : = { v ∈ Λ k E : ∣ v ∣ = 1 } ⊂ Λ k E \widetilde{X_E}:=\{v\in\Lambda^kE:|v|=1\}\subset\Lambda^kE X E : = { v ∈ Λ k E : ∣ v ∣ = 1 } ⊂ Λ k E be a 2-cover of X X X . Since element in π 1 ( X ) \pi_1(X) π 1 ( X ) is the map α : S 1 → X \alpha:S^1\rightarrow X α : S 1 → X .
[Prop] The following statements are equivalent:
α ∗ E \alpha^*E α ∗ E is orientable;
α ∗ X E ~ \alpha^*\widetilde{X_E} α ∗ X E is trivial;
α \alpha α can be lifted to X E ~ \widetilde{X_E} X E .
Thus, ∀ [ α ] ∈ π 1 ( X ) \forall [\alpha]\in\pi_1(X) ∀ [ α ] ∈ π 1 ( X ) , define
w 1 ( E ) [ α ] = { + 1 , α ∗ E is orientable , − 1 , α ∗ E is unorientable . w_1(E)[\alpha]
=\left\{
\begin{aligned}
&+1,\qquad \alpha^*E\text{~is orientable},\\
&-1,\qquad \alpha^*E\text{~is unorientable}.
\end{aligned}
\right.
w 1 ( E ) [ α ] = { + 1 , α ∗ E is orientable , − 1 , α ∗ E is unorientable .
Suppose that E → X \boxed{E\rightarrow X} E → X is a vector bundle of rank k k k , and L = Λ k E → X L=\boxed{\Lambda^kE\rightarrow X} L = Λ k E → X . By the above correspondence,
Define
w 1 ( E ) : = W ( Λ k E ) w_1(E):=W(\Lambda^kE)
w 1 ( E ) : = W ( Λ k E )
which means
w 1 ( E ) [ α ] = { + 1 , α ∗ E is orientable , − 1 , α ∗ E is unorientable . w_1(E)[\alpha]=\left\{
\begin{aligned}
&+1,\qquad \alpha^*E\text{~is orientable},\\
&-1,\qquad \alpha^*E\text{~is unorientable}.
\end{aligned}
\right.
w 1 ( E ) [ α ] = { + 1 , α ∗ E is orientable , − 1 , α ∗ E is unorientable .
for α : S 1 → X \alpha:S^1\rightarrow X α : S 1 → X . In fact, w 1 w_1 w 1 gives Vect R 1 ( X ) ≅ H 1 ( X , Z / 2 ) \text{Vect}_\mathbb{R}^1(X)\cong H^1(X,\mathbb{Z}/2) Vect R 1 ( X ) ≅ H 1 ( X , Z / 2 ) , which means that w 1 w_1 w 1 classifies real line bundles. Now we wish to define all Stiefel-Whitney classes.
[Prop] Let L 1 , L 2 ∈ Vect R 1 ( X ) L_1,L_2\in\text{Vect}_\mathbb{R}^1(X) L 1 , L 2 ∈ Vect R 1 ( X ) . Then
w 1 ( L 1 ⊗ L 2 ) = w 1 ( L 1 ) + w 1 ( L 2 ) . w_1(L_1\otimes L_2)=w_1(L_1)+w_1(L_2).
w 1 ( L 1 ⊗ L 2 ) = w 1 ( L 1 ) + w 1 ( L 2 ) .
Proof. For line bundle, the tensor product of unorientable bundle is orientable. □ \square □
Whitney product formula : Notice that Λ k + l ( E ⊕ F ) = Λ k E ⊗ Λ l F \Lambda^{k+l}(E\oplus F)=\Lambda^kE\otimes\Lambda^lF Λ k + l ( E ⊕ F ) = Λ k E ⊗ Λ l F . Then
w 1 ( E ⊕ F ) = w 1 ( Λ k + l ( E ⊕ F ) ) = w 1 ( Λ k E ⊗ Λ l F ) = w 1 ( E ) + w 1 ( F ) . \begin{aligned}
w_1(E\oplus F)
&=w_1(\Lambda^{k+l}(E\oplus F))\\
&=w_1(\Lambda^kE\otimes\Lambda^lF)\\
&=w_1(E)+w_1(F).
\end{aligned}
w 1 ( E ⊕ F ) = w 1 ( Λ k + l ( E ⊕ F ) ) = w 1 ( Λ k E ⊗ Λ l F ) = w 1 ( E ) + w 1 ( F ) .
Let E → X E\rightarrow X E → X be a real vector bundle of rank k k k . Define
P ( E ) ∣ x : = { lines through the origin of E x } = P ( E x ) \begin{aligned}
\mathbb{P}(E)|_x:&=\{\text{lines through the origin of }E_x\}\\
&=\mathbb{P}(E_x)
\end{aligned}
P ( E ) ∣ x : = { lines through the origin of E x } = P ( E x )
If E U ≅ U × R k E_U\cong U\times\mathbb{R}^k E U ≅ U × R k , then P ( E ) ∣ U ≅ E × R P k − 1 \mathbb{P}(E)|_U\cong E\times\mathbb{R}P^{k-1} P ( E ) ∣ U ≅ E × R P k − 1 is a vector bundle.
Denote the tautological line bundle over P ( E ) \mathbb{P}(E) P ( E ) by
η x : = { ( l , u ) ∈ P ( E x ) × E x ∣ u ∈ L } \eta_x:=\{(l,u)\in\mathbb{P}(E_x)\times E_x|u\in L\}
η x : = { ( l , u ) ∈ P ( E x ) × E x ∣ u ∈ L }
Define
L E : = { ( l , u ) ∈ P ( E ) × E ∣ π ( l ) = p ( u ) , u ∈ l } ⊂ π ∗ E \begin{aligned}
L_E:&=\{(l,u)\in\mathbb{P}(E)\times E|\pi(l)=p(u), u\in l\}\\
&\subset \pi^*E
\end{aligned}
L E : = { ( l , u ) ∈ P ( E ) × E ∣ π ( l ) = p ( u ) , u ∈ l } ⊂ π ∗ E
Then L → P ( E ) \boxed{L\rightarrow\mathbb{P}(E)} L → P ( E ) is a line bundle. Consider the tautological line bundle over R P n \mathbb{R}P^n R P n :
η n → R P n \eta_n\rightarrow \mathbb{R}P^n
η n → R P n
Non-zero : since η 1 → R P 1 \eta_1\rightarrow\mathbb{R}P^1 η 1 → R P 1 is a Mobius line bundle, which is unorientable, then w ( η 1 ) = a ≠ 0 w(\eta_1)=a\neq 0 w ( η 1 ) = a = 0 . With the natural embedding i : R P 1 → R P n i:\mathbb{R}P^1\rightarrow \mathbb{R}P^n i : R P 1 → R P n , we have
w 1 ( η n ) = a ≠ 0 ∈ H 1 ( R P n , Z / 2 ) . w_1(\eta_n)=a\neq 0\in H^1(\mathbb{R}P^n,\mathbb{Z}/2).
w 1 ( η n ) = a = 0 ∈ H 1 ( R P n , Z / 2 ) .
Pullback : Let f : X → Y f:X\rightarrow Y f : X → Y and α : S 1 → X \alpha:S^1\rightarrow X α : S 1 → X be a loop.
By direct calculation:
w 1 ( f ∗ E ) [ α ] = { + 1 , ( α ∗ f ∗ ) E is orientable ; − 1 , ( α ∗ f ∗ ) E is unorientable . w_1(f^*E)[\alpha]=\left\{
\begin{aligned}
&+1, \qquad (\alpha^*f^*)E\text{~is~orientable};\\
&-1, \qquad (\alpha^*f^*)E\text{~is~unorientable}.
\end{aligned}
\right.
w 1 ( f ∗ E ) [ α ] = { + 1 , ( α ∗ f ∗ ) E is orientable ; − 1 , ( α ∗ f ∗ ) E is unorientable .
( f ∗ w 1 ( E ) ) [ α ] = { + 1 , ( f ∘ α ) ∗ E is orientable ; − 1 , ( f ∘ α ) ∗ E is unorientable . (f^*w_1(E))[\alpha]=\left\{
\begin{aligned}
&+1, \qquad (f\circ\alpha)^*E\text{~is~orientable};\\
&-1, \qquad (f\circ\alpha)^*E\text{~is~unorientable}.
\end{aligned}
\right.
( f ∗ w 1 ( E ) ) [ α ] = { + 1 , ( f ∘ α ) ∗ E is orientable ; − 1 , ( f ∘ α ) ∗ E is unorientable .
Hence w 1 ( f ∗ E ) = f ∗ w 1 ( E ) w_1(f^*E)=f^*w_1(E) w 1 ( f ∗ E ) = f ∗ w 1 ( E ) . Then { 1 , w 1 ( η n ) , ⋯ , w 1 ( η n ) n − 1 } \{1,w_1(\eta_n),\cdots,w_1(\eta_n)^{n-1}\} { 1 , w 1 ( η n ) , ⋯ , w 1 ( η n ) n − 1 } is a basis for H ∗ ( R P n ; Z / 2 ) H^*(\mathbb{R}P^n;\mathbb{Z}/2) H ∗ ( R P n ; Z / 2 ) , and
{ 1 , w 1 ( L E ) , ⋯ , w 1 ( L E ) k − 1 } \{1,w_1(L_E),\cdots,w_1(L_E)^{k-1}\}
{ 1 , w 1 ( L E ) , ⋯ , w 1 ( L E ) k − 1 }
is a basis for H ∗ ( P ( E x ) ; Z / 2 ) = H ∗ ( R P k ; Z / 2 ) H^*(\mathbb{P}(E_x);\mathbb{Z}/2)=H^*(\mathbb{R}P^{k};\mathbb{Z}/2) H ∗ ( P ( E x ) ; Z / 2 ) = H ∗ ( R P k ; Z / 2 ) . By Leray-Hirsch Theorem ,
H ∗ ( P ( E ) ; Z / 2 ) ≅ H ∗ ( X ) ⊗ Z / 2 { 1 , w 1 ( L ) , … , w 1 ( L ) k − 1 } π ∗ α ∪ w 1 ( L ) s ← α ⊗ w 1 ( L ) s \begin{aligned}
H^*(\mathbb{P}(E);\mathbb{Z}/2) &\cong H^*(X)\otimes \mathbb{Z}/2\{1,w_1(L),\ldots,w_1(L)^{k-1}\}\\
\pi^*\alpha\cup w_1(L)^s&\leftarrow \alpha\otimes w_1(L)^s
\end{aligned}
H ∗ ( P ( E ) ; Z / 2 ) π ∗ α ∪ w 1 ( L ) s ≅ H ∗ ( X ) ⊗ Z / 2 { 1 , w 1 ( L ) , … , w 1 ( L ) k − 1 } ← α ⊗ w 1 ( L ) s
where π ∗ : H ∗ ( X ; Z / 2 ) → H ∗ ( P ( E ) ; Z / 2 ) \pi^*:H^*(X;\mathbb{Z}/2)\rightarrow H^*(\mathbb{P}(E);\mathbb{Z}/2) π ∗ : H ∗ ( X ; Z / 2 ) → H ∗ ( P ( E ) ; Z / 2 ) is injective.
The injectivity is by π ∗ ( H ∗ ( X ; Z / 2 ) ) = H ∗ ( X ) ⊗ Z / 2 \pi^*(H^*(X;\mathbb{Z}/2))=H^*(X)\otimes\mathbb{Z}/2 π ∗ ( H ∗ ( X ; Z / 2 ) ) = H ∗ ( X ) ⊗ Z / 2 .
Thus,
w 1 ( L E ) k = ( π ∗ a 1 ) w 1 ( L E ) k − 1 + ⋯ + ( π ∗ a k − 1 ) w 1 ( L E ) + π ∗ a k . w_1(L_E)^k=(\pi^*a_1)w_1(L_E)^{k-1}+\cdots+(\pi^*a_{k-1})w_1(L_E)+\pi^*a_k.
w 1 ( L E ) k = ( π ∗ a 1 ) w 1 ( L E ) k − 1 + ⋯ + ( π ∗ a k − 1 ) w 1 ( L E ) + π ∗ a k .
Define the i i i -th Stiefel-Whitney class by
w i ( E ) : = a i , 1 ≤ i ≤ k . w_i(E):=a_i,\qquad 1\leq i\leq k.
w i ( E ) : = a i , 1 ≤ i ≤ k .
Respecting Axioms
We are now in a position to show that: the Stiefel-Whitney classes defined above satisfies Axioms. In the previous part, we have verified the nontrivality , pullback of w 1 w_1 w 1 and Whitney product formula for line bundle.