In the construction of cell structure of Grassmannian manifold, in the Page 77 of Characteristic Classes written by John Milnor, we need the following property:
Prop. Let u,v∈Rk be unit vectors, such that u=−v. Then
T(u,v)x:=x−1+u⋅v(u+v)⋅x(u+v)+2(u⋅x)y
is the unique rotation in Rk taking u to v, such that
- T(u,u)=id, and
- T(u,v)∘T(v,u)=id.
The verification of the proposition is a little bit lengthy, but I am going to do it here in the article.
Proof. (1) Keep in mind that u⋅u=v⋅v=1.
T(u,u)x=x−1+u⋅u2u⋅x(2u)+2(u⋅x)u=x−2(u⋅x)u+2(u⋅x)u=x.
(2) Let y=T(u,v)x=x−1+u⋅v(u+v)⋅x(u+v)+2(u⋅x)v. Then
==T(v,u)∘T(u,v)xT(v,u)yy−1+u⋅v(u+v)⋅y(u+v)+2(v⋅y)u
Consider one by one the coefficient of u and v. Observe that
(u+v)2=u2+v2+2u⋅v=2(1+u⋅v).
The coefficient in u is
=======−1+u⋅v(u+v)⋅x−1+u⋅v(u+v)⋅y+2(v⋅y)2(v⋅y)−1+u⋅v(u+v)⋅x−1+u⋅vu+v⋅(x−1+u⋅v(u+v)⋅x(u+v)+2(u⋅x)v)2(v⋅y)−1+u⋅v(u+v)⋅x−1+u⋅v(u+v)⋅x−2(u+v)⋅x+2(u⋅x)(u⋅v+1)2(v⋅y)−2(u⋅x)2v⋅(x−1+u⋅v(u+v)⋅x(u+v)+2(u⋅x)v)−2u⋅x2(v⋅x)−21+u⋅v(u+v)⋅x(u⋅v+1)+4(u⋅x)−2(u⋅x)−2(u⋅x)+4(u⋅x)−2(u⋅x)0.
By the above procedure, we can know that
1+u⋅v(u+v)⋅x+1+u⋅v(u+v)⋅y=2(u⋅x)=2(v⋅y).
Hence the coefficient in v is
==−1+u⋅v(u+v)⋅x−1+u⋅v(u+v)⋅y+2(u⋅x)−2(u⋅x)+2(u⋅x)0.
This completes the proof. □